B7 polytope - meaning and definition. What is B7 polytope
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is B7 polytope - definition


B7 polytope         
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
WIKIMEDIA LIST ARTICLE
List of 7-cube polytopes; List of B7 polytopes
In 7-dimensional geometry, there are 128 uniform polytopes with B7 symmetry. There are two regular forms, the 7-orthoplex, and 8-cube with 14 and 128 vertices respectively.
B7 (protein)         
FAMILY OF CELL-SURFACE PROTEINS FOUND ON ANTIGEN-PRESENTING CELLS
B7 family; B7 antigens
B7 is a type of integral membrane protein found on activated antigen-presenting cells (APC) that, when paired with either a CD28 or CD152 (CTLA-4) surface protein on a T cell, can produce a costimulatory signal or a coinhibitory signal to enhance or decrease the activity of a MHC-TCR signal between the APC and the T cell, respectively.
Integral polytope         
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
CONVEX POLYTOPE WHOSE VERTICES ALL HAVE INTEGER CARTESIAN COORDINATES
Convex lattice polytope
In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points.